Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo.
نویسندگان
چکیده
Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair and members of the transforming growth factor-beta (TGF-β) superfamily are a key mediator of MSC chondrogenesis. While TGF-β mediated MSC chondrogenesis is well established in in vitro pellet or hydrogel cultures, clinical translation will require effective delivery of TGF-βs in vivo. Here, we investigated the co-encapsulation of TGF-β3 containing alginate microspheres with human MSCs in hyaluronic acid (HA) hydrogels towards the development of implantable constructs for cartilage repair. TGF-β3 encapsulated in alginate microspheres with nanofilm coatings showed significantly reduced initial burst release compared to uncoated microspheres, with release times extending up to 6 days. HA hydrogel constructs seeded with MSCs and TGF-β3 containing microspheres developed comparable mechanical properties and cartilage matrix content compared to constructs supplemented with TGF-β3 continuously in culture media, whereas constructs with TGF-β3 directly encapsulated in the gels without microspheres had inferior properties. When implanted subcutaneously in nude mice, constructs containing TGF-β3 microspheres resulted in superior cartilage matrix formation when compared to groups without TGF-β3 or with TGF-β3 added directly to the gel. However, calcification was observed in implanted constructs after 8 weeks of subcutaneous implantation. To prevent this, the co-delivery of parathyroid hormone-related protein (PTHrP) with TGF-β3 in alginate microspheres was pursued, resulting in partially reduced calcification. This study demonstrates that the controlled local delivery of TGF-β3 is essential to neocartilage formation by MSCs and that further optimization is needed to avert the differentiation of chondrogenically induced MSCs towards a hypertrophic phenotype.
منابع مشابه
Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis.
Mesenchymal stem cells (MSCs) are multipotent progenitor cells whose plasticity and self-renewal capacity have generated significant interest for applications in tissue engineering. The objective of this study was to investigate MSC chondrogenesis in photo-cross-linked hyaluronic acid (HA) hydrogels. Because HA is a native component of cartilage, and MSCs may interact with HA via cell surface r...
متن کاملEffects of Mesenchymal Stem Cell and Growth Factor Delivery on Cartilage Repair in a Mini-Pig Model
OBJECTIVE We have recently shown that mesenchymal stem cells (MSCs) embedded in a hyaluronic acid (HA) hydrogel and exposed to chondrogenic factors (transforming growth factor-β3 [TGF-β3]) produce a cartilage-like tissue in vitro. The current objective was to determine if these same factors could be combined immediately prior to implantation to induce a superior healing response in vivo relativ...
متن کاملApplication of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration.
Tendon injuries are often associated with significant dysfunction and disability due to tendinous tissue's very limited self-repair capacity and propensity for scar formation. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material present an alternative therapeutic option for tendon repair/regeneration that may be advantageous compared to other current tr...
متن کاملChondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in a simulated osteochondral environment is hydrogel dependent.
Hydrogels pose interesting features for cartilage regeneration strategies, such as the option for injectability and in situ gelation resulting in optimal filling of defects. We aimed to study different hydrogels for their capability to support chondrogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs). hBMSCs were encapsulated in alginate, alginate with hyaluronic acid (alginat...
متن کاملInduction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System
Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials
دوره 32 27 شماره
صفحات -
تاریخ انتشار 2011